Phosphorylation of Y192 in LCK may enhance kinase activity by limiting SH2

Association with the C-terminal phosphotyrosine that mediates autoinhibition, which is a regulatory mechanism that may be Ginsenoside-Ro operative in the case of Src. However, phosphorylation of LCK Y192 has been found to have an overall negative effect on important readouts of TCR signaling, indicating that impairing LCK’s ability to associate with its binding partners outweighs potential enhancement of kinase activity through relief of autoinhibition. Thus, it is apparent that categorization of a protein or site as “positive” or “negative” is dependent on context and such categorization must be made with caution. Finally, the results presented here are based on the Jurkat T cell line, which has been a source of much of our current knowledge of TCR signaling mechanisms and is amenable to MS measurements. Use of a cell line was required to obtain the quantities of proteins required for MS-based assays of protein phosphorylation and to obtain the fine time resolution desired. However, Jurkat T cells do not perfectly recapitulate the behavior of T cells in vivo. Characterization of very early signaling mechanisms in primary T cells poses significant technical challenges and is beyond the intended scope of the present study. The breadth and fine time resolution of our proteomic data allowed us to determine the order in which events occur. One of the fastest events observed was phosphorylation of the actin regulator WAS, which surprisingly preceded activating phosphorylation of the kinase ZAP70. It has previously been reported that WAS is recruited to the plasma membrane via a pathway involving LAT and LCP2, which are activated through ZAP70-dependent phosphorylation. This mechanism of WAS Dimesna activation did not allow our model to reproduce the observed WAS phosphorylation dynamics. In contrast, a previously unappreciated shortcut pathway, which is apparently active only transiently, allowed the model to reproduce the data. Experimentally, knockdown of LCP2 expression did not attenuate the early WAS phosphorylation, consistent with model predictions and the presence of an alternative pathway. These results indicate that the flow of information through different pathways may shift as signaling progresses. Furthermore, the shortcut pathway may explain how the PRS in CD3E contributes to the ability of the TCR to respond to a range of agonist molecules. The PRS in CD3E and its interaction with NCK1 are known to be more consequential for responses to weak agonists than strong agonists. This difference may arise because weak agonists tend to induce only partial TCR phosphorylation, allowing longer-lasting NCK1-CD3E association. Although the interactions forming the shortcut pathway have been characterized individually, their combined role in facilitating rapid WAS activation has not hitherto been investigated. Thus, the results presented here complement past work by suggesting a potential mechanism by which the PRS of CD3E enables responses to weak agonists. Our findings suggest that TCR signaling is initiated by proteins that transition from positive to negative roles. This strategy resembles bang-bang control, in which a controller assumes extreme values. PTPN6 appears to switch TCR signaling “on” upon signal detection and “off” after a period of signal transmission. Another apparent mediator of bang-bang control is CD3E, which is initially “on” and provides a shortcut pathway to WAS activation by recruiting NCK1 prior to receptor phosphorylation, but later is turned “off” as the CD3E ITAM is phosphorylated.

Leave a Reply

Your email address will not be published. Required fields are marked *